EFFECT OF PROLACTIN ON PATHWAYS OF GLUCOSE OXIDATION IN EXPLANTS FROM RABBIT MAMMARY GLAND

Christine E.BOLTON and A.E.BOLTON

National Institute for Research in Dairying, Shinfield, Reading,, RG2 9AT, England

Received 1 July 1970

1. Introduction

Studies of pathways of glucose metabolism in mammary gland slices from pregnant and lactating rats and rabbits have shown that with the onset of lactation there is a marked increase in the utilization of glucose via the pentose phosphate pathway [1, 2]. The activities of two of the enzymes of this pathway, glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase, are higher during lactation than during pregnancy in several species [1, 3-6]. In vivo studies have indicated an involvement of prolactin in this response [7, 8].

The *in vitro* effect of prolactin on pathways of carbohydrate metabolism in mammary gland has been investigated by several workers, using tissue slices [9–11], but the results of these studies are conflicting. McLean [9] found that prolactin stimulated the oxidation of glucose carbon atoms 1 and 6 to an equal extent in mammary gland slices from pregnant rats, but had no effect on slices from lactating animals. In contrast, Weinberg et al. [10] reported that prolactin increased the rate of oxidation of 1-14C-glucose only, the effect being greater on mammary gland slices from lactating than from pregnant animals. Jarret and Field [11], however, were unable to detect any *in vitro* effect of prolactin on 14CO₂ yields from 1-14C-glucose.

In the present study, mammary gland explants from pseudopregnant rabbits were maintained in organ culture, and the presence of prolactin in the culture medium has been shown to result in a significant increase in the ratio:

$$\frac{\text{yield of }^{14}\text{CO}_2 \text{ from } 1^{-14}\text{C-glucose}}{\text{yield of }^{14}\text{CO}_2 \text{ from } 6^{-14}\text{C-glucose}} \quad \left(\frac{\text{C1}}{\text{C6}} \text{ ratio}\right)$$

This suggests a preferential stimulation by prolactin of glucose oxidation via the pentose phosphate pathway.

2. Methods

Explants of approx. 1 mm³ and weighing about 0.5 mg each were taken from the mammary glands of virgin Dutch Rabbits, about 6 months old, on the 11th day of a pseudopregnancy induced by intravenous injection of 50 I.U. of Chorulon (Organon Laboratories, Morden, Surrey). The explants in groups of 32 were cultured on stainless steel rafts in plastic, disposable Petri dishes (Sterilin, 5 cm) containing 5 ml medium 199 (Glaxo Laboratories, Greenford, Middlesex) with 0.5 mg glucose per ml. The medium was buffered with bicarbonate (1.3 mg/ml) and pencillin was added to give a concentration of 50 I.U./ml. One group of explants was cultured with insulin (5 μ g/ml, donated by Dr. O.K.Behrens, Eli Lilly) and corticosterone (1 µg/ml, provided by Merck, Sharp and Dohme). A second group of explants was cultured with insulin, corticosterone and prolactin (1 μ g/ml, NIH-PS-6 ovine). The explants were maintained at 37° in an atmosphere of 95% oxygen, 5% carbon dioxide. After 3 days the culture medium was removed and the explants were washed with Krebs-Henseleit-Ringer solution. Histological examination of serial sections of 2 explants from each group was carried out after culture.

The remaining explants were transferred in batches of 5 to the outer compartments of 25 ml conical flasks fitted with centre wells. Each flask contained 2 umoles of glucose (0.5 μ Ci) labelled with ¹⁴C in the carbon 1 or carbon 6 position in 2 ml Krebs-Hanseleit-Ringer solution. The explants were incubated with insulin and corticosterone, or with insulin, corticosterone and prolactin, as indicated in table 1. The flasks were gassed with a 95% oxygen, 5% carbon dioxide mixture and stoppered with self-sealing rubber caps. Incubation was carried out at 37° with shaking at 80 strokes/ min. After 3 hr, 0.2 ml of KOH was injected into each centre well and 0.35 ml of 6 N H₂SO₄ was injected into the outer compartment of each flask to terminate the reaction and drive off CO₂ from the medium. The flasks were incubated for a further 1 hr to collect the CO₂. The KOH was transferred to scintillation vials and the ¹⁴CO₂ produced was determined in a liquid scintillation counter.

3. Results and discussion

The results are summarised in table 1. The presence of prolactin during the 3-day culture period caused a significant increase in the formation of labelled CO₂ from both 1-¹⁴C-glucose and 6-¹⁴C-glucose (table 2a). However, 1-¹⁴C-glucose oxidation was stimulated to a greater extent than 6-¹⁴C-glucose oxidation, resulting in an increase in the C1/C6 ratio from 2 to 5. Prolactin had no effect on the oxidation of labelled glu-

cose when present during the three hour incubation period (table 2b). Results of four further experiments, in which only two or three of the four possible treatments indicated in table 1 were used, confirmed these findings. These results suggest that prolactin when present in the culture medium preferentially stimulates glucose oxidation via the pentose phosphate pathway.

Histological examination of the explants after culture showed good survival with both hormonal treatments. After culturing in the presence of prolactin, large amounts of secretion appeared in the mammary alveoli.

Jones and Forsyth [12], Rivera [13] and Leader and Barry [14] found increases in the levels of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase when mammary gland explants from mid-pregnant mice were cultured in the presence of prolactin. Thus the increase in pentose phosphate pathway activity observed in the present study could be due to a direct effect of prolactin on the activities of the enzymes of this pathway. Preliminary studies suggest that prolactin may also act by stimulating pathways of reoxidation of NADP; McLean [15] has shown that the pentose phosphate pathway in the mammary gland is limited by the availability of the oxidised form of this coenzyme.

McLean [9] and Weinberg et al. [10] have reported that prolactin stimulates the rate of oxidation of glucose by mammary gland slices during incubation in Ringer solution for up to $1\frac{1}{2}$ hr. These workers used concentrations of prolactin between 5 μ g/ml and

Table 1
Oxidation of 1-14C-glucose and 6-14C-glucose by rabbit mammary gland explants under different conditions of culture and incubation (means of 4 experiments).

	Hormones* present in		% Yield of ¹⁴ CO ₂ from		
	Culture medium (0-72 hr)	Incubation medium (72-75 hr)	1- ¹⁴ C-glucose	6- ¹⁴ C-glucose	<u>C1</u> C6
	I + B	I + B	0.253	0.153	1.778
	I + B	I + B + PL	0.283	0.150	1.915
	I + B + PL	I + B	1.165	0.219	5.052
	I + B + PL	I + B + PL	1.115	0.230	4.968

^{*} Concentrations of hormones: Insulin (I) 5 µg/ml; cortisterone (B) 1 µg/ml; prolactin (PL) 1 µg/ml.

Table 2
Comparison of the effect of prolactin in the culture medium and in the incubation medium on subsequent metabolism of explants (statistical analysis of results presented in table 1).

	Mean % yield of 14	<u>C1</u>		
Hormones present*	1-14C-glucose	6- ¹⁴ C-glucose	<u>C6</u>	
a) During culture (0-72 hr)				
I + B	0.268	0.152	1.846	
I + B + PL	1.140	0.224	5.010	
Difference ± S.E.M.	$0.872 \pm 0.185, p < 0.01$	0.072 ± 0.028 , $p < 0.05$	$3.164 \pm 0393, p < 0.001$	
b) During incubation (72-75 hr)				
I + B	0.709	0.186	3.415	
I + B + PL	0.699	0.190	3.442	
Difference ± S.E.M.	0.010 ± 0.185 , n.s.	0.004 ± 0.028 , n.s.	0.027 ± 0.393 , n.s.	

^{*} Hormone concentrations as in table 1.

600 μ g/ml. The results of the present study show that the presence of prolactin at a concentration of 1 μ g/ml during a three hr incubation had no significant effect on glucose oxidation by mammary gland explants, whether or not these had been previously cultured with prolactin. Thus, the expression of the effect which prolactin exerts during culture is not dependent upon the continued presence of this hormone during the three hr incubation period.

Acknowledgements

The authors wish to thank Miss R.J.Bushell for her efficient technical assistance, Miss Z.D.Hosking for carrying out the statistical analysis and gratefully acknowledge the gifts of the hormones used. One of us (A.E.B.) was in receipt of a Meat and Livestock Commission Postgraduate Scholarship.

References

- [1] P.McLean, Biochim. Biophys. Acta 30 (1958) 303.
- [2] S.Abraham and I.L.Chaikoff, J. Biol. Chem. 234 (1959) 2246.
- [3] G.E.Glock and P.McLean, Biochim. Biophys. Acta 12 (1953) 590.
- [4] G.E.Glock and P.McLean, Biochem. J. 56 (1954) 171.
- [5] B.Gul and R.Dils, Biochem. J. 112 (1969) 293.
- [6] P.E.Hartmann and E.A.Jones, Biochem. J. 116 (1970) 657.
- [7] S.Abraham, P.Cady and I.L.Chaikoff, Endocrinology 66 (1960) 280.
- [8] R.J.Heitzman, J.Dairy Res. 36 (1969) 47.
- [9] P.McLean, Biochim. Biophys. Acta 42 (1960) 166.
- [10] A.N.Weinberg, I.Pasten, H.E.Williams and J.B.Field, J. Biol. Chem. 236 (1961) 1002.
- [11] R.J.Jarret and J.B.Field, Biochim. Biophys. Acta 104 (1965) 63.
- [12] E.A.Jones and I.A.Forsyth, J. Endocrinol. 43 (1969) xli.
- [13] E.M.Rivera, in: Lactogenesis, eds. M.Reynolds and S.J. Folley (Univ. Pennsylvania Press, Philadelphia, Pa., 1969) p. 217.
- [14] D.P.Leader and J.M.Barry, Biochem. J. 113 (1969) 175.
- [15] P.McLean, Biochim. Biophys. Acta 37 (1960) 296.